
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
12. Page Faults

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


Memory-Management Unit (MMU)

Need hardware support to achieve safe and secure protection

Hardware device maps virtual to physical address
The user program deals with virtual addresses

It never sees the real physical addresses

load

app.

kernel

virtual address
0x30408

MMU

Is address
legal?

Yes, phys. addr
0x92408

memorydata

NoTo fault handler

Page Fault Handling Frame Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 2/38



Paging

A Present Bit in the page table
indicates if a virtual page
is currently mapped to
physical memory

MMU reads the page table and
autonomously translates
valid mappings

If a process issues an instruction
to access a virtual address
that is currently not mapped,
the MMU calls the OS to
bring in the data (page fault)

Today: What happens on a page fault

Page Fault Handling Frame Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 3/38



Page Fault Handling

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 4/38



Paging

Use disk to simulate virtual memory that is larger than physical memory

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 5/38



Page Fault Handling

Access to page that is currently
not present in main memory
causes page fault
(exception that invokes OS)

1 OS checks validity of access
(requires additional info)

2 Get empty frame

3 Load contents of requested page from disk into frame

4 Adapt page table

5 Set present bit of respective entry (a.k.a. as setting valid-invalid bit to v)

6 Restart instruction that caused the page fault

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 6/38



Page Fault Latency

Page Fault Rate 0 ≤ p ≤ 1.0
p = 0: No page faults
p = 1: Every reference is a page fault

Effective Access Time (EAT)

EAT = (1− p) × memory access

+ p ×
(

page fault overhead

+page fault service time

+restart overhead
)

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 7/38



Performance Impact of Page Faults

Memory access time = 200 nanoseconds

Average page fault service time = 8 milliseconds

EAT = (1− p)× 200 + p(8ms)
= (1− p)× 200 + p × 8, 000, 000
= 200 + p × 7, 999, 800

If one access out of 1,000 causes a page fault, then EAT = 8.2
microseconds.⇒ Slowdown by a factor of 40!

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 8/38



Page Fault Challenges

What to eject?
How to allocate frames among processes?
Which particular process’s pages to keep in memory?
See 2nd part of this lecture (page frame allocation)

What to fetch?
What if block size not the same as page size?
Just one page needed? Prefetch more?

How to resume a process after a fault?
Need to save state and resume
Process might have been in the middle of an instruction!

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 9/38



What to fetch?

Bring in page that caused page fault

Pre-fetch surrounding pages?
Reading two disk blocks is approximately as fast as reading one
As long as no track/head switch, seek time dominates (disk)
If application exhibits spatial locality Þ big win

Pre-zero pages?
Don’t want to leak information between processes
Need 0-filled pages (0-pages) for stack, heap, .bss, . . .
Zero on demand?
Keep a pool of 0-pages that is filled in the background when the CPU is
idle?

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 10/38



How to resume a process after a fault?

Hardware provides info about page fault
Faulting virtual address: %cr2 on intel

OS needs to figure out context of fault. Was the instruction a
Read or write?
Instruction fetch?
User access to kernel memory?

Idempotent instructions are easy
Just re-do load/store instructions
Just re-execute instructions that only access one address

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 11/38



Complex instructions must be re-started, too

Some CISC instructions are difficult to restart such as
Block move of overlapping areas, string move instructions
Auto-increments/decrements of multiple locations
Instructions that keep and update state in source %esi, destination %edi,
and counter %ecx registers

Possible Solutions
Touch all relevant pages before operation starts
Keep modified data in registers so that page faults can’t take place
Design ISA such that complex operations can execute partially and leave
consistent state on a page fault (easy job for the OS)

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 12/38



Shared Library/Code Using Virtual
Memory

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 13/38



Memory-Mapped Files

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 14/38



Other Issues – Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

A file is initially read using demand paging. A page-sized portion of the
file is read from the file system into a physical page. Subsequent
reads/writes to/from the file are treated as ordinary memory accesses

Simplifies file access by treating file I/O through memory rather than
read() write() system calls

Also allows several processes to map the same file allowing the pages
in memory to be shared

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 15/38



Shared Data Segments

Shared data segements are often implemented with
temporary, anonymous memory-mapped files
shared pages (with allocated space on backing store)

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 16/38



Copy-On-Write

Copy-on-Write (COW) allows both parent and child process to initially
share the same pages in memory
A page is copied only if one of the processes attempts to modify it

COW allows more efficient process creation as only modified pages are
copied

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 17/38



COW: Before Process 1 Modifies Page C

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 18/38



COW: After Process 1 Modifies Page C

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 19/38



Shared Pages Example

Page Fault Handling Frame Allocation
Memory Overcommitment Page Fault Handling Shared Memory

F. Bellosa – Betriebssysteme WT 2016/2017 20/38



Page Frame Allocation

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 21/38



Local vs. Global Allocation

Global allocation: All frames are considered for replacement
Does not consider page ownership
One process can get another process’s frame
Does not protect process from a process that hogs all memory

Local allocation: Only frames of the faulting process are considered for
replacement

Isolates processes (or users)
Separately determine how many frames each process gets

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 22/38



Fixed Allocation

Equal allocation: All processes get the same amount of frames
e.g., there are 100 frames and 5 processes Þ each process gets 20 frames

Proportional allocation: Allocate according to the size of the process

si = size of process pi

S =
∑

si

m = total number of frames

ai is the allocation for pi :
ai = si

S ×m

Example: m = 64
s1 = 10
s2 = 127

a1 = 10
137 × 64 ≈ 5

a2 = 127
137 × 64 ≈ 59

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 23/38



Priority Allocation

Priority Allocation (global replacement)
Proportional allocation scheme using priorities rather than size

If process Pi generates a page fault
Select one of its frames for replacement or
Select a frame from a process with lower priority

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 24/38



Memory Locality

Background storage is much slower than memory
Paging extends memory size using background storage
Goal: Run near memory speed, not near background storage speed

Pareto principle applies to working sets of processes
10% of memory gets 90% of the references
Goal: Keep those 10% in memory, the rest on disk

Problem: How do we identify those 10%?

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 25/38



Locality in a Memory-Reference Pattern

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 26/38



Thrashing
Thrashing: The system is busy swapping pages in and out

Each time one page is brought in, another page, whose contents will soon
be referenced, is thrown out
Effect: Low CPU utilization, processes wait for pages to be fetched from disk
Consequence: OS “thinks” that it needs higher degree of multiprogramming

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 27/38



Reasons for Thrashing

Access pattern has no temporal locality
Process doesn’t follow the pareto principle
Past 6= future

Each process fits individually, but too many for system
Degree of multiprogramming too high

Memory too small to hold hot memory of a single process (the 10%)

Page replacement policy doesn’t work well
We will talk about page replacement policies at length next lecture
For now we’ll just establish the concepts

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 28/38



Working-Set Model

∆: Working-set window
A fixed number of page references
Example: 10,000 instructions (#instruction = #page ref?)

WSSi : Working set of process Pi

Total number of pages referenced in the most recent ∆ (varies in time)
∆ too small: Will not encompass entire locality
∆ too large: Will encompass several localities
∆ =∞: Will encompass entire program

D =
∑

WSSi : Total demand for frames
If D > m: Thrashing

Policy: If D > m, suspend a process

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 29/38



Working-Set Model

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 30/38



Working Set and Page Fault Rates

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 31/38



Keeping Track of the Working Set

Ideally: Replace page that is referenced furthest in the future (oracle)
Problem: Cannot predict the future

Idea: Predict future from past
Record page references from the past and extrapolate them into the future
(we will see how in the next lecture)
Problem: Too expensive to make an ordered list of all page references at
run-time

Idea: Sacrifice precision for speed
The MMU automatically sets the reference bit in the respective page table
entry every time a page is referenced
Set a timer to scan all page table entries for reference bits

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 32/38



Example: Keeping Track of the Working Set

∆ = 10, 000

Timer interrupts after every 5,000 time units

Keep 2-bit history for each page in addition to the reference-bit
On timer interrupt, do for each page:

Shift reference bit into the 2-bit history
Reset reference bit

If history 6= 0: Page is in working set

Not accurate, because window is moving in large steps
Improvement: 10 bits and interrupt every 1000 time units

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 33/38



Page Fault Frequency Allocation Scheme
Establish “acceptable” page fault rate

If actual rate too low, give frames to other process
If actual rate too high, allocate more frames to process

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 34/38



Solaris

Maintains a list of free pages to assign to faulting processes

Paging is performed by pageout process
Scans pages using modified clock algorithm
Scanrate ranges from slowscan to fastscan

Free memory thresholds
determine the behavior
of pageout

Lotsfree: Begin paging

Desfree: Increase paging

Minfree: Begin swapping

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 35/38



Page Fetch Policy: Demand-Paging

When should the OS allocate new pages?
Two possibilities: Pre-paging and demand-paging

Demand-Paging: Transfer only pages that raise page faults

+ Only transfer what is needed

+ Less memory needed per process
(higher degree of multiprogramming possible)

– “Many” initial page faults when a task starts

– More I/O operations Þ More I/O overhead

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 36/38



Page Fetch Policy: Pre-Paging

Pre-Paging: Speculatively transfer pages to RAM
At every page fault: speculate what else should be loaded
E.g., load entire text section when starting process

+ Improves disk I/O throughput by reading chunks

– Wastes I/O bandwidth if page is never used

– Can destroy the working set of other processes in case of page stealing

Page Fault Handling Frame Allocation
Frame Allocation Working Set Fetching Data

F. Bellosa – Betriebssysteme WT 2016/2017 37/38



Summary

Paging simulates a memory size of the size of virtual memory

When pages are filled via page faults some questions need to be
answered by the OS

What to eject?
What to fetch?
How to resume a process after a fault?

When allocating frames and replacing pages different strategies can be
followed

Local vs. global allocation
Fixed vs. proportional vs. priority allocation

The working sets of the active processes need to be taken into account
to prevent thrashing

In an ideal world the pager would know all future references
In the real world pagers track references in the past to predict the future

Page Fault Handling Frame Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 38/38


	12. Page Faults
	Page Fault Handling
	Memory Overcommitment
	Page Fault Handling
	Shared Memory

	Frame Allocation
	Frame Allocation
	Working Set
	Fetching Data



